Convexity Estimates for Nonlinear Elliptic Equations and Application to Free Boundary Problems Estimations De Convexité Pour Des Équations Non-linéaires Elliptiques Et Application À Des Problèmes De Frontière Libre

نویسنده

  • Jean DOLBEAULT
چکیده

– We prove the convexity of the set which is delimited by the free boundary corresponding to a quasi-linear elliptic equation in a 2-dimensional convex domain. The method relies on the study of the curvature of the level lines at the points which realize the maximum of the normal derivative at a given level, for analytic solutions of fully nonlinear elliptic equations. The method also provides an estimate of the gradient in terms of the minimum of the (signed) curvature of the boundary of the domain, which is not necessarily assumed to be convex.  2002 Éditions scientifiques et médicales Elsevier SAS AMS classification: 35J25; 35J67; 35R35

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convexity Estimates for Nonlinear Elliptic Equations and Application to Free Boundary Problems

We prove the convexity of the set which is delimited by the free boundary corresponding to a quasi-linear elliptic equation in a 2-dimensional convex domain. The method relies on the study of the curvature of the level lines at the points which realize the maximum of the normal derivative at a given level, for analytic solutions of fully nonlinear elliptic equations. The method also provides an...

متن کامل

Convexity of solutions and C1,1 estimates for fully nonlinear elliptic equations

The starting point of this work is a paper by Alvarez, Lasry and Lions (1997) concerning the convexity and the partial convexity of solutions of fully nonlinear degenerate elliptic equations. We extend their results in two directions. First, we deal with possibly sublinear (but epi-pointed) solutions instead of 1-coercive ones; secondly, the partial convexity of C2 solutions is extended to the ...

متن کامل

Strong instability of solitary waves for nonlinear Klein–Gordon equations and generalized Boussinesq equations Instabilité forte d’ondes solitaires pour des équations de Klein–Gordon non linéaires et des équations généralisées de Boussinesq

We study here instability problems of standing waves for the nonlinear Klein–Gordon equations and solitary waves for the generalized Boussinesq equations. It is shown that those special wave solutions may be strongly unstable by blowup in finite time, depending on the range of the wave’s frequency or the wave’s speed of propagation and on the nonlinearity. © 2006 Elsevier Masson SAS. All rights...

متن کامل

Numerical Analysis The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods

A finite element method with numerical quadrature is considered for the solution of a class of second-order quasilinear elliptic problems of nonmonotone type. Optimal a-priori error estimates for the H and the L norms are derived. The uniqueness of the finite element solution is established for a sufficiently fine mesh. Our results permit the analysis of numerical homogenization methods. To cit...

متن کامل

Transonic shocks and free boundary problems for the full Euler equations in infinite nozzles

We establish the existence, stability, and asymptotic behavior of transonic flows with a transonic shock for the steady, full Euler equations in two-dimensional infinite nozzles of slowly varying cross-sections. Given a smooth incoming flow that is close to a uniform supersonic state at the entrance, we prove that there exists a transonic flow whose infinite downstream smooth subsonic region is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002